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The global trait syndrome for trees with reproductive1

strategies2

—3
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Summary4

Understanding trait syndromes can benefit from traits that are closely tied to fitness. In trees,5

traits are often so weakly tied to fitness that their utility for comparative studies remains uncertain.6

To address this, we analyze trait syndromes in trees from a perspective that includes fecundity.7

We gathered 12 million observations of seed production of 775,991 trees in 784 tree species.8

We tested whether seed production is associated with the leaf economic spectrum, the plant9

size syndrome, or whether reproduction creates its own, independent dimension related to seed10

mass and number trade-off. Bringing seed production into trait analysis, while allowing for11

effect of environment and phylogeny, exposes a number of novel relationships in trees. The most12

direct connection to fitness, represented by numbers of seeds and production of seed biomass,13

comes through seed size, which, in turn, associates large seeds with high leaf area, low foliar14

nitrogen and low SLA, and dense wood. Trees with large leaves, low nutrient demands and low15

photosynthetic capacity indicated by low foliar nitrogen concentrations and low SLA, that grow16

slowly to attain dense wood, are being selected for production of large seeds and high investment17

into seed biomass. Abundant seed shadows are associated with small seeds produced by fast-18

growing, nutrient-demanding trees with small and cheap leaves. The trait turnover appears to19

reflect a shift from fast-growing, early successional vegetation with greater dispersal abilities20

to slower-growing, and stress-tolerant species that recruit in high shade; showing that trees life21

strategies align along the successional axis globally.22

—-23

keywords: fecundity | forest recruitment | functional traits | life history strategies | seed size and24

number trade-off | size syndrome | leaf economics syndrome25

26

Introduction27

Understanding forest diversity can benefit from knowledge of traits that are closely linked to28

fitness (Adier et al., 2014; Paine et al., 2015; Yang et al., 2018; Kelly et al., 2021). Adaptive29

evolution operates on variation that affects survival and reproduction. Leaf traits, wood density,30

and plant height are clearly important for trees, yet their connections to fitness are indirect31

(Wright et al., 2004; Violle et al., 2007; Chave et al., 2009; Díaz et al., 2016). Large, thin,32

short-lived leaves with high nitrogen content confer clear advantages in settings where long-33

lived, highly lignified leaves do not (Shreve, 1925; Field & Mooney, 1986; Reich, 2014).34

However, interpreting the fitness implications of many traits can require broad extrapolation,35

such as ecophysiological measurements describing minute-scale responses of leaves, roots, or36

xylem elements that are integrated with many other responses to determine survival and/or37

reproduction over the lifetimes of whole plants. While no trait links directly to fitness in trees,38

many are so weakly tied to fitness that their utility for comparative studies remains uncertain.39

Seedling recruitment at one site (Rüger et al., 2018, 2020) provides a more direct link to40

fitness. Given that recruitment varies for each species at each site, species-level reproductive41

effort could be a valuable extension to trait understanding. The long-term and geographically42

extensive measurements of tree seed production needed for species-level synthesis is only43

recently available (Clark et al., 2021; Journé et al., 2022; Qiu et al., 2022; Sharma et al., 2022).44

With newly available estimates, we re-examine the hypotheses that describe reproduction as part45

of an omnibus syndrome that explains all traits (e.g., fast-slow) or, alternatively, as a separate46

axis of variation. Diverging from both extremes, we find that the global link between seed47

attributes and wood density is more consistent with an adaptive solution that is different from48
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(even orthogonal to) the leaf-economic spectrum.49

Principal components analysis (PCA) has been a primary tool for exploring trait variation,50

contributing to at least three interpretations for forest trees. One view sees reproduction and51

leaf traits as part of a “fast-slow” continuum of plant strategies (Reich, 2014) (Fig. 1a). That52

dimension represents the trade-off between resource acquisition and processing, and it could53

be linked to a growth-survival trade-off (Poorter et al., 2008; Wright et al., 2010; Rüger et al.,54

2018). Leaves that assimilate carbon quickly, together with low wood density, characterize55

species that are resource-demanding, grow fast, and die young (Westoby et al., 2002; Moles,56

2018). Abundant seed production may offset mortality losses (Muller-Landau, 2010; Reich,57

2014). Species with some or all of these traits might dominate early successional stages through58

effective colonization, and they might not persist under intense competition (Poorter et al., 2008;59

Wright et al., 2010).60

Figure 1: Hypothetical associations between dimensions of plant life strategies represented by functional traits
and reproduction. Abundant seed production can be associated with: A) fast life syndrome (slow-fast resource
turnover axis); B) plant size syndrome; C) create its own, largely independent axis of seed size-seed number
trade-off. Species seed productivity (SSP) is the product of seed number and seed size divided by tree basal area.

Alternatively, the size hypothesis suggests that reproduction is part of a stature-recruitment61

trade-off (Fig.1b) (Kohyama, 1993; Díaz et al., 2016; Rüger et al., 2018, 2020). According to62

this hypothesis, large size maximizes canopy performance at the expense of recruitment, and63

vice versa. The analysis of 282 co-occurring tree species at tropical Barro Colorado Island (BCI)64

emphasized a leaf-trait axis and a size-recruitment axis (Fig.1b), with species characterized by65

small stature, small leaves, and small seeds having high recruitment at the BCI (Rüger et al.,66

2018).67

Finally, seed abundance and seed size may represent a third, largely independent, dimension68

of variation (Fig. 1c), as proposed by the twin-filter (TF) hypothesis (Grime & Pierce, 2012).69

According to the TF, primary strategies such as fast-slow determine persistence for the cli-70

mate/habitat norms, while traits involved in episodic events, which might include reproduction,71

affect fitness independently of the primary strategy (Grime & Pierce, 2012; Pierce et al., 2014).72

The leaf-height-seed (LHS) scheme of Westoby (1998) hypothesizes that seed size plays a role73

similar to reproduction in the TF model. In both hypotheses, plants can produce either many or74

few seeds (TF) or small or large seeds (LHS) independent of other plant traits. All three of the75

foregoing hypotheses imply an important role for fecundity, and they depend on the assumption76

that all traits having some connection to fitness. The availability of species-level seed production77

can lend novel insight to trait analysis due to its close connection to tree fitness.78

2



A limitation of summaries available from PCA comes from the fact that correlations include79

all the indirect ways that traits could be associated. For example, a seed-size/wood-density80

correlation could come from a need for high wood density in order to produce large seeds; if81

true, this would be a direct relationship. Alternatively, both variables might be driven by climate82

for reasons that do not depend on one another; this is an indirect relationship. Another indirect83

relationship is represented by phylogenic conservatism; some species groups tend to produce84

larger seeds or denser wood than others, even as environments that might select for one or both85

traits change. The correlation structure exposed by PCA does not discriminate between direct86

(conditional) and indirect (marginal) relationships. If relationships are indirect, then conditional87

estimates offer the most transparent view of their connections (Seyednasrollah & Clark, 2020).88

The Masting Inference and Forecasting (MASTIF) network includes 12 million tree-year89

observations of seed production on 775,991 trees from 784 tree species from a broad range of90

biomes (Journé et al., 2022; Qiu et al., 2022). To control for variation within species and, thus,91

to sharpen our understanding of species differences, we estimate fecundity with an analytical92

framework that includes trees condition (species, size, shading), habitat (soils), and climate93

(temperature and moisture deficit), while accommodating dependence between and within trees94

across years (Clark et al., 2019). The large sample size is important for the notoriously noisy95

seed production in trees (Kelly et al., 2021), where tree-to-tree and year-to-year variation spans96

several orders of magnitude (Clark et al., 2004; Journé et al., 2022). The traditional study of97

trait syndromes with PCA is supplemented here with conditional (direct) relationships between98

traits using Generalized Joint Attribute Modeling (GJAM) (Clark et al., 2017). Including99

environment as fixed effects and phylogenetic groups as random effects, GJAM decomposes100

trait relationships into direct and indirect relationships. By combining seed production with101

seed size, we show how reproductive traits relate to one another separately and in combination,102

including on a size basis: the species seed productivity, SSP = seed size × seed number/tree103

basal area, standardizes for tree size (Qiu et al., 2021). If large seeds confer an advantage in104

competitive, shaded understories, while many, small seeds allow colonization of distant sites,105

then species seed productivity (SSP) provides a direct link to reproduction.106

Results107

Across the 784 species in this analysis, dominant sources of variation derive from foliar traits and108

seed/wood density. In the principal components analysis (PCA) of our data that includes mean109

annual SSP (species seed productivity as seed biomass per m2 tree basal area), 54.2% of variation110

is concentrated in two principal components of equal importance (Fig. 2A). PCA1 is associated111

with leaf traits. At one end are species with thin, large, acquisitive leaves (large SLA, high area,112

high foliar nitrogen), including heaven lotus (Gustavia superba), Panama tree (Sterculia apetala),113

pawpaw (Asimina triloba), and eastern walnut (Juglans nigra). At the other end are species114

with low SLA, low foliar nitrogen, and low leaf area, including evergreen conifers like giant115

sequoia (Sequoiadendron giganteum), California redwood (Sequoia sempervirens), monkey116

puzzle (Araucaria araucana), Fraser fir (Abies fraseri), and white cedar (Thuja occidentalis).117

PCA2 is dominated by seed size, SSP, and wood density. Large seeds are associated with high118

SSP, because seed size has a larger effect on SSP than does seed numbers (Qiu et al., 2022).119

Dense wood is associated with both variables, with examples including African crabwood120

(Carapa procera) and Fagales like chestnuts (Castanea) and oaks (Quercus). At the opposite121

end with low-density wood and small seeds are willows (Salix), fuchsia (Fuchsia excorticata),122

and trumpet tree (Cecropia obtusa). Tree height is weakly associated with foliar attributes:123

small trees tend to have large, thin leaves.124
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A second PCA in which SSP is replaced with seed number (seeds per m2 tree basal area,125

rather than seed mass per m2 tree basal area) yields similar results (Fig. S2). As with the PCA126

using SSP (fig. 2A), the first axis of this second PCA is associated with foliar traits with no127

contributions from seed numbers. The second PCA axis separates species according to seed128

size, seed number, and wood density. Tree height is again weakly associated foliar attributes but129

also with reproduction: small trees tend to produce small seeds in large numbers (Fig. S2).130

Figure 2: Fecundity on the global spectrum of tree form. A) Biplot; arrows length indicates the loading of
each considered functional trait onto the first two PCA axes. Points represent the position of species, coded
blue for needle, black for broad-deciduous, and yellow for broad evergreen leaf habit. B) Summary of GJAM
coefficients presented at Fig. 3. Significant associations between traits are highlighted by lines, coded red for
negative and blue for positive relationship. Dashed lines highlight associations that are significant only in model
without phylogenetical control (see Fig. S3). Extended PCA plots are available in supplement Fig. S2. SSP
stands for species seed production and is the product of seed size × seed number. Both SSP and seed number are
standardized to a tree basal area. Traits are summarized in Table 1.

Conditional associations that allow for the effects of environmental conditions and taxonomic131

relatedness show that seed size is positively related to SSP and negatively related to seed number132

(Fig. 2B). The solid lines in Fig. 2B are different from zero in Figure 3, whereas dashed133

highlight associations that are significant only in model without phylogenetical control. Nutrient-134

demanding species with high foliar nitrogen concentrations and high SLA produce small seeds,135

a relationship that is not apparent in PCA. Large seeds are produced by trees with dense wood,136

low seed number, high leaf area, low foliar N, and low SLA (Fig. 3B-G). Relationships between137

high SSP and dense wood and between large seeds and tree height are suggested by PCA (Fig.138

2A), but these relationships are not significant after accounting for environment and phylogeny139

(Fig. 2B). Although the links between wood density and foliar traits are significant, they are140

weaker than the relationships of wood density with seed attributes (Fig. 3D).141

Discussion142

Across 784 species in our sample spanning from tropical to boreal environments, the introduction143

of tree fecundity brings a direct connection of trait syndromes to fitness. Seed production makes144

a dominant contribution to trait syndromes in trees, but one that is not strictly consistent with145
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Figure 3: Conditional relationships between traits after accounting for climate and shared ancestry. Marginal
posterior distributions are shown as boxes that contain median vertical lines and are bounded by 68% credible
intervals (CI), with 95% CI whiskers. Fig. 2 summarizes the significant relationships. See Fig. S3 for conditional
relationships derived from GJAM without the phylogenetical control. SSP stands for species seed production and
is the product of seed size × seed number. Both SSP and seed number are standardized to a tree basal area. Traits
are summarized in Table 1.

fast-slow or stature trade-offs. The traits most directly connected to fitness include numbers of146

seeds and SSP (seed mass for a given tree size). Because seed size is weakly associated with147

high leaf area, low foliar nitrogen, low SLA, and dense wood, there is a weak, indirect link of148

these traits to SSP, but not to seed number. Fast strategies, as captured by leaf traits, were not149

coupled with abundant seed production, even though nutrient demanding trees show a tendency150

to produce small seeds. Reproduction (seed size and number) was also not associated with151

tree height as in the stature-recruitment hypothesis at a tropical BCI (Rüger et al., 2018, 2020).152

Across all species and sites in this study, trees with dense wood, large leaves, and low nutrient153

demands produce large but few seeds. These species invest heavily in seed biomass, as indicated154

by high SSP. In contrast, high seed number is associated with small seeds, most common in155

species with low-density wood, low leaf area, high foliar N, and high SLA.156

Trait syndromes identified here are consistent with traditional trait concepts, including157

turnover through succession (Bazzaz, 1979; Falster & Westoby, 2005; Wilfahrt et al., 2014).158

Production of abundant, small seeds increases recruitment in distant, disturbed habitats (Muller-159

Landau, 2010). The r strategy of the r-K spectrum is associated with fast growth and high160

nutrient requirements (Bazzaz, 1979; Huston & Smith, 1987; Henery & Westoby, 2001; Muller-161

Landau et al., 2008). By including reproduction, our analysis indicates that the traditional r162

strategy, which might include low-density wood that often comes with fast growth (Chave et al.,163

2009), includes production of small seeds. High foliar nitrogen and cheap leaf construction164

(high SLA) agrees with high photosynthetic rates (Reich & Oleksyn, 2004; Reich, 2014; Moles,165

2018). On the K side are species with dense wood and slow growth (Westoby, 1998; Poorter166

5



et al., 2005). Low foliar nitrogen and low SLA can align with low foliar Rubisco content, low167

photosynthetic capacity, and, thus, low maintenance respiration in low light (Reich et al., 1998;168

Poorter, 2015; Moles, 2018). Species with such conservative leaves are also selected for large169

seeds needed for seedling establishment in shade, at the expense of the many small seeds that170

would promote colonization of distant sites (Westoby et al., 2002; Muller-Landau, 2010). High171

SSP further suggests selection for proportionally high reproductive investment per individual to172

maintain populations in low light conditions (Kohyama et al., 2003; Falster & Westoby, 2005).173

Estimates of reproductive investment for a given tree size, or SSP, enrich the interpretation of174

plant reproductive strategies beyond the insights that come from seed size alone (Westoby et al.,175

2002; Muller-Landau, 2010; Lebrija-Trejos et al., 2016). Production of small, copious seeds176

increases the number of recruitment opportunities at the cost of limited investment per individual177

seed. Small seeds can mean low tolerance of abiotic stress and limited resources in competitive178

sites (Westoby et al., 2002; Tilman, 1994; Fricke et al., 2019). Conversely, large seeds come179

with a cost of producing fewer of them (Henery & Westoby, 2001; Muller-Landau et al., 2008;180

Fricke et al., 2019). That trade-off means that small-seeded species produce more germinants181

per unit of reproductive mass, while large-seeded species should produce better performing182

seedlings in smaller numbers (Fricke et al., 2019; Muller-Landau et al., 2008). However, the183

size-numbers trade-off is not 1:1 (Qiu et al., 2022). Instead, species that produce large seeds184

more than compensate (on a mass basis) for fewer of them, resulting in higher SSP (seed mass185

per tree basal area (Qiu et al., 2022)). The size-numbers trade-off will differ for each species in186

each setting. Nevertheless, the higher seed biomass investment in high-SSP species means that187

simultaneous inclusion of seed size and number provides the most accurate link to reproductive188

potential.189

The divergent results from this study and those suggesting a stature-recruitment trade-off at190

a tropical site (Rüger et al., 2018, 2020; Guillemot et al., 2022) are not necessarily in conflict.191

The within-site covariation in traits, where short trees might be associated with small seeds and192

leaves in the shaded understory (Rüger et al., 2018), need not predict with among-site, species193

level difference, which average over environments for a each species at many sites. At the species194

level, fecundity is largely independent of tree size and more closely aligned wood density and195

several foliar traits.196

Anticipating individual and combined effects of global change pressures on future forests197

requires understanding vulnerability not only of mature trees, but also of fecundity and re-198

cruitment (McDowell et al., 2020; Sharma et al., 2022; Clark et al., 2021; Bogdziewicz, 2022;199

Hanbury-Brown et al., 2022). Earth system models currently assume that reproductive alloca-200

tion is indifferent among plant functional types (Scholze et al., 2006; Hanbury-Brown et al.,201

2022). There is area and promise for improvement as shown by a recent study at the BCI that202

accurately predicted forest succession by replacing the hyperdiversity of tropical forest with just203

two trait axes associated with fast-slow and size dimensions (Rüger et al., 2020). Globally,204

significant links exist between fecundity and trait syndromes that broadly reflect turnover of205

trees life strategies across successions time. However, many of these trait relationships appear to206

weak to be useful predictors of fecundity in the Earth system models. Instead, easily measurable207

seed mass had strong links to SSP and seed number, and can form a first basis of fecundity208

prediction across global forests.209
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Methods225

Trait relationships A data set, including one that might be assembled from meta-analysis,226

contains species that are characterized by traits and sample locations, each with its own en-227

vironmental setting. PCA summarizes correlation in the joint distribution of traits, written in228

bracket notation as [T] = [𝑇1, . . . , 𝑇𝑀]. If the relationship between traits depends on phylogeny,229

summarized by phylogenetic groups 𝑃𝑔=1...𝐺 (taxonomic, e.g., genus or family), and on the envi-230

ronment 𝑋 , then there is a joint distribution [T, 𝑃, 𝑋]. The indirect environment and phylogeny231

effects may dominate the relationships between some or many traits. An alternative approach232

uses the conditional distribution,233

[T|𝑃, 𝑋] = [T, 𝑃, 𝑋]
[𝑃, 𝑋] (1)

where the distribution of groups and environments [𝑃, 𝑋] is that which occurs in the data set.234

To determine trait relationships we fit a joint model to the conditional distribution [T|𝑃, 𝑋],235

which provides estimates of the of phylogeny as random groups g[𝑠], 𝑔 = 1, . . . , 𝑀 for species 𝑠236

and 𝑋 as a𝑄×𝑀 matrix of coefficients B. We then decompose the distribution into (conditional)237

effects of other traits and the environment. The effect of trait 𝑚 on the remaining −𝑚 traits is238

the conditional distribution [T−𝑚 |𝑇𝑚, 𝑃, 𝑋]. Using the fitted model in GJAM (see below), we239

decompose the conditional effect of 𝑚 on other traits as,240

𝐸 (T−𝑚 |𝑇𝑚, 𝑃, 𝑋) = 𝐸 (T−𝑚 |𝑇𝑚) + 𝐸 (T−𝑚 |𝑃, 𝑋) (2)

The first term is a conditional influence of 𝑚 as distinct from (𝑃, 𝑋).241

Fecundity data and MASTIF model Seed production in perennial plants suffers from extreme242

signal-to-noise problem, created by orders of magnitude variation from year to year and tree243

to tree (Pesendorfer et al., 2021; Pearse et al., 2020; Clark et al., 2004) that can can bury any244

trends (Clark et al., 2021). Autoregression models assume a fixed periodicity, but mast intervals245

are not fixed (Shibata et al., 2020; Pesendorfer et al., 2020). There are as many time series as246

there are trees that must be modeled together because there is dependence created by among-247

trees synchrony in masting variation (Crone et al., 2011; Bogdziewicz et al., 2021). Masting248

patterns are further complicated by spatio-temporal variation in habitat and climate (Pesendorfer249

et al., 2021; Pearse et al., 2020). The many sources of variation means that estimation of trees250

fecundity can only be achieved from broad coverage and large sample sizes, while accounting251
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for individual tree condition, local habitat, and climate (Clark et al., 2021; Qiu et al., 2021;252

Sharma et al., 2022). This is here achieved with the MASTIF model (Clark et al., 2019).253

The MASTIF model and data from the Masting Inference and Forecasting (MASTIF) network254

are summarized here, and extensively described in recent papers (Clark et al., 2019, 2021; Qiu255

et al., 2021; Sharma et al., 2022). The tree-year observations in the network comes from seed256

traps and from crop counts. Data include longitudinal (repeated) observations on individual257

trees (99%) and opportunistic observations that come through the iNaturalist project (Clark258

et al., 2019). Seed trap data consist of numbers of seeds that accumulate annually in mapped259

seed traps on forest inventory plots. A fitted dispersal kernel relates seed counts to mapped260

trees, accounting for uncertainty in seed transport and Poisson seed counts (Clark et al., 2019).261

Crop counts include counts of reproductive structures with estimates of the fraction of the crop262

observed, and beta-binomial distribution accounts for uncertainty in the crop-fraction estimates263

(Clark et al., 2019). This study includes 12,008,722 tree-years from North America, South264

and Central America, Europe, Africa, Asia, and Oceania, which is gathered over 5,115 plots265

and 787,444 trees (Fig. 4). Unlike meta-analysis, the MASTIF model jointly estimate trees266

fecundity based on all the observations; the SN and SSP used in the PCA analysis are calculated267

based on 297,690 mature individuals and 3,730,381 tree-years. The list of species included in268

the analysis is given in the Online Supplement as a csv file.269

Figure 4: Map of raw data used to estimate trees fecundity with the MASTIF model.

The MASTIF model, detailed in Clark et al. (2019), is a dynamic biophysical model for270

year-to-year and tree-to-tree seed production. The MASTIF model is Bayesian hierarchical,271

state–space model that allows for conditional independence in crop-count and seed-trap data272

through latent states. The model estimates seed production with conditional fecundity, which273

depends on a probability that the tree is sexually mature, tree size, shading, local climate, and274

soil conditions. Random effects on individual and year allow for wide variation between trees275

and over time that are typical of seed production. The posterior covariance between trees and276

years can take any form, avoiding assumptions of standard time-series models, important due to277

the quasiperiodic variation in time and varying levels of synchronicity between individual trees.278

Model structure and methodology was implemented with R, version 4.0 (R Core Team, 2020)279

and the R package Mast Inference and Forecasting (MASTIF) (Clark et al., 2019).280
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Fecundity at the species level We estimated species investment into seed production using281

two metrics, both scaled to the tree basal area: annual seed number (SN), and species seed282

productivity (SSP), which can be summarized as annual seed biomass investment (seed number283

× seed mass) (Qiu et al., 2022). Estimation of both SN and SSP starts with the estimation of284

individual tree mean seed production that depends on each tree location that accounts for effects285

of the environment and includes uncertainty for each year. Individual trees seed production286

over a species is then summarized as SN or SSP. Tree-level estimate of seed production, i.e.,287

individual seed production (ISP), is the product of mass per seed 𝑚𝑠 and seeds per tree basal288

area per year. Calculation of ISP combines posterior mean values with their uncertainties, as an289

expectation over the variations across years:290

ISP𝑖 𝑗 𝑠 =
𝑚𝑠

𝑏𝑖 𝑗
×
∑

𝑡 𝑤𝑖 𝑗 𝑠,𝑡 𝑓𝑖 𝑗 𝑠,𝑡∑
𝑡 𝑤𝑖 𝑗 𝑠,𝑡

(3)

where 𝑚𝑠 is seed mass (g), 𝑏𝑖 𝑗 is basal area (𝑚2), and weight 𝑤𝑖 𝑗 𝑠,𝑡 is the inverse of the coefficient291

of variation (CV),292

𝑤𝑖 𝑗 𝑠,𝑡 = 𝐶𝑉−1
𝑖 𝑗 𝑠,𝑡 = 𝑓𝑖 𝑗 𝑠,𝑡/𝑠𝑖 𝑗 𝑠,𝑡 (4)

𝑠𝑖 𝑗 𝑠,𝑡 is the standard error of the estimate. The 𝐶𝑉−1 is used instead of the inverse of variance,293

because the mean tends to scale with variance. Low values for 𝑓𝑖 𝑗 𝑠,𝑡 are noisy and less important294

than high values, which are emphasized by the 𝐶𝑉 . We quantify ISP as the mass of a tree’s295

seed production relative to its basal area to standardize for tree size (intermediate trees produce296

more seeds than smaller ones Qiu et al. (2021)). All estimates are time averages across annual297

estimates, so we hereafter omit yr−1 from dimensions. Therefore, ISP has the units of 𝑔/𝑚2.298

Species seed production (SSP) comes from expectation of all ISP for a given species 𝑠:299

SSP𝑠 =

∑
𝑖 𝑗 𝑤𝑖 𝑗 𝑠ISP𝑖 𝑗 𝑠∑

𝑖 𝑗 𝑤𝑖 𝑗 𝑠

(5)

where 𝑤𝑖 𝑗 𝑠 is defined the same way as 𝑤𝑖 𝑗 𝑠,𝑡 , i.e., root mean predictive variance divided by300

the mean ISP for tree 𝑖 𝑗 𝑠. Analyses of SSP are done on the proportionate (log) scale to avoid301

dominance of results by the few species that produce the highest seed production. Visualizations302

are based on log10 to facilitate interpretation of scales in results. SN is estimated following the303

same steps, but the calculations omits seed mass (g).304

Functional traits We selected six functional plant traits previously shown to well capture plant305

life strategies (Díaz et al., 2016; Carmona et al., 2021) (Table 1): plant height (measured in m),306

leaf area (measured in mm2), specific leaf area (SLA; measured in mm2/mg; the inverse of leaf307

mass per area), leaf nitrogen concentration (measured in mg/g), wood density (measured in g/m3)308

and seed mass (measured in mg). The data was obtained from primary sources and supplemented309

with publicly available data from the latest version of the TRY Plant Trait Database TRY Plant310

Trait Database (Kattge et al., 2020) extracted from the Carmona et al. (2021). Missing values311

for the six traits were filled with genus-level means. Bivariate relationships are summarized at312

Fig. S4).313

Generalized joint attribute modeling To incorporate the effects of environment and phy-314

logeny on the distribution of traits, we use GJAM to account for the different variable types315

represented by each trait (Clark et al., 2016). Trait variable types are given in Table (Ta-316

ble 1). Environmental covariates include soil fertility (Cation Exchange Capacity), mean annual317
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Table 1: Summary of traits used in the analysis.

Trait Units
Species seed production (SSP) g/m2

Seed number seeds/m2

Seed size mg
Height m

Wood density g/m3

Leaf area mm2

Leaf nitrogen mg/g
SLA mm2/mg

temperature, and annual moisture deficit (difference between potential evapotranspiration and318

precipitation) averaged at the species level for the MASTIF data set. GJAM allowed us to319

accommodate the dependence between traits and phylogeny as random groups.320

To partition the expected effects a trait on others (eq. (2)), we start with the joint distribution321

of 𝑀 traits from a species 𝑠 fitted with GJAM,322

[T𝑠 |𝑃, 𝑋] = 𝑀𝑉𝑁𝑀 (T𝑠 |B′x𝑠 + g[𝑠], Σ)
g ∼ 𝑀𝑉𝑁 (0,Ω) (6)

(Clark et al., 2016), where g[𝑠] is a random vector for the phylogenetic group to which 𝑠323

belongs, and Ω is the 𝑀 × 𝑀 covariance between traits taken over phylogenetic groups. With324

this fitted model, we consider the effects of trait 𝑚 on all other traits, organized in the vector325

[T] = [T−𝑚, 𝑇𝑚]. We can partition the mean and covariance as326

B =

(
B−𝑚
B𝑚

)
(7)

where B𝑚 holds column 𝑚 and B−𝑚 holds the other 𝑀 − 1 columns of B. The covariance matrix327

is also partitioned as328

Σ =

(
Σ−𝑚,−𝑚 Σ−𝑚,𝑚

Σ𝑚,−𝑚 Σ𝑚,𝑚

)
(8)

This joint distribution allows us to isolate the contributions of trait𝑚 as a conditional distribution.329

Substracting the random effect for species 𝑠 gives the trait vector T̃𝑠 = T𝑠 − g[𝑠]. Then330

T̃−𝑚,𝑠 |𝑇𝑚,𝑠 ∼ 𝑀𝑉𝑁 (𝝁−𝑚,𝑠,P) (9)
𝝁−𝑚,𝑠 = B−𝑚x𝑠 + A(𝑇𝑚,𝑠 − B𝑚x𝑠)

= Cx𝑠 + A𝑇𝑚,𝑠 (10)
P = Σ−𝑚,−𝑚 − AΣ𝑚,−𝑚 (11)

There are now two sets of coefficients, a length 𝑀 − 1 vector for effects of 𝑚, A = Σ−𝑚,𝑚Σ
−1
𝑚,𝑚,331

and another 𝑀 − 1 × 𝑄 matrix for effects of x, C = B𝑚 − AB𝑚. The elements of matrix A are332

arrows in figure fig. 2. Matrix A were obtained with the conditionalParameters function in333

the GJAM package. GJAM fitting is open-access with R package GJAM on CRAN.334
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Supplementary material484

This Supplement provides additional data summaries as tables and figures. Full summaries of485

the MASTIF network are available these links for sites and species.486

Figure S1: PCA as presented on Fig. 2 extended with contributions and loadings of the three axes that explained
the most variance. A) Species seed productivity (SSP) on the global spectrum of tree form. Arrow length indicates
the loading of each considered functional trait onto PCA axes. Points represent the position of species. B) Explained
variance for each principal component. Bar plots of the contribution (C,D,E) and loading (F,G,H) of each trait to
each principal component. Large point shows the mean position for each group .
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Figure S2: A) Species fecundity (seed number) on the global spectrum of tree form. Arrow length indicates the
loading of each considered functional trait onto PCA axes. Points represent the position of species. B) Explained
variance for each principal component. Bar plots of the contribution (C,D,E) and loading (F,G,H) of each trait to
each principal component. Large point shows the mean position for each group .
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Figure S3: Conditional relationships between traits after accounting for climate but not shared ancestry.
Marginal posterior distributions are shown as boxes that contain median vertical lines and are bounded by 68%
credible intervals (CI), with 95% CI whiskers. Fig. 2 summarizes the significant relationships.
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Figure S4: Summary of bivariate relationships between considered traits. Points are species, lines are loess
regression and associated 95% CI. Coefficients are Pearson correlations. Traits are log-transformed.
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